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Lecture 5: September 11

Hodge structures and Hodge filtrations. Let me quickly elaborate on the
question that came up last time, namely to what extent one can describe Hodge
structures in terms of the Hodge filtration. Suppose that

H =
⊕

p+q=n

Hp,q

is a Hodge structure of weight n. The corresponding Hodge filtration consists of
the subspaces

F pH =
⊕

i≥p
Hi,n−i.

We saw last time that the Hodge filtration appears naturally when we look at fami-
lies of compact Kähler manifolds (and variations of Hodge structure). In general, it
is not possible to recover the Hodge decomposition from the filtration. Some extra
data is needed:

(1) Traditionally, one works with R-Hodge structures. Here H = C ⊗R HR,
where HR is an R-vector space, and the Hodge structure is assumed to
satisfy

Hp,q = Hq,p.

It is then not hard to show that

Hp,q = F pH ∩ F qH;

indeed, the intersection consists exactly of the subspaces Hi,j with i ≥ p
and j ≥ q.

(2) More importantly, one can also recover the Hodge decomposition with the
help of a polarization h. Recall that the Hodge decomposition is orthogonal
with respect to h, and that (−1)pS is positive definite on the subspace Hp,q.
You should convince yourself that

Hp,q = F pH ∩ (F p+1H)⊥,

where the orthogonal complement is taken with respect to h. Note that p
is the only thing that appears on the right-hand side; to find the value of
q = n−p, we also need to know the weight of the Hodge structure. In other
words, to completely describe a polarized Hodge structure, we need to give
the Hodge filtration, the polarization, and the weight n.

Variations of Hodge structure. Let B be a complex manifold of dimension one.
Let me briefly recall the main definition from last time; as someone pointed out, I
also forgot to say that the polarization needs to be OB-linear in the first argument.

Definition 5.1. Let n ∈ Z. A polarized variation of Hodge structure of weight n
on B consists of the following data:

(a) A holomorphic vector bundle V and a connection ∇ : V → Ω1
B ⊗OB V .

(b) A decreasing filtration by holomorphic subbundles F pV , called the Hodge
filtration, such that ∇(F pV ) ⊆ Ω1

B ⊗OB F
p−1V .

(c) A hermitian pairing h : V ⊗C V → C∞B , that is OB-linear in its first argu-
ment, and “flat”, in the sense that dh(s′, s′′) = h(∇s′, s′′) + h(s′,∇s′′) for
all local sections s′, s′′ ∈ V .

The requirement is that, for every point b ∈ B, the fiber Vb, together with the
induced pairing Sb : Vb ⊗C Vb → C and the filtration by the subspaces F pVb ⊆ Vb,
must come from a Hodge structure of weight n, in the sense we just talked about.
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Since the pairing h is hermitian, we get both

h(fs′, s′′) = fh(s′, s′′) and h(s′, fs′′) = fh(s′, s′′)

for local sections s′, s′′ ∈ V and f ∈ OB . I do not know of a good way to indicate
this kind of “sesquilinearity” in the tensor product.

We showed last time that the k-th cohomology groups of a family of compact
Kähler manifolds form a polarized variation of Hodge structure of weight k. Another
nice class of examples are bundles with a flat metric.

Example 5.2. Let V be a holomorphic vector bundle on B, and suppose that V has
a positive definite hermitian metric h : V ⊗C V → C∞B whose Chern connection is
flat. Such bundles correspond exactly to unitary representations of the fundamental
group. We can consider V and h as being a polarized variation of Hodge structure
of weight 0, in the following way.

Every fiber of V can be considered as a polarized Hodge structure of weight
0, with the trivial Hodge decomposition Vb = V 0,0

b , because hb is by assumption
positive definite on all of Vb. We therefore define the Hodge filtration as

F pV =

{
V if p ≥ 0,

0 if p < 0.

Finally, since the curvature of the Chern connection vanishes, the (1, 0)-part of the
Chern connection gives us a holomorphic connection

∇ : V → Ω1
B ⊗OB V

with the property that dh(s′, s′′) = h(∇s′, s′′) + h(s′,∇s′′). So we obtain all the
data we need to have a polarized variation of Hodge structure of weight 0. This class
of examples is very useful as a test case: many results about polarized variations of
Hodge structure are still nontrivial here, but usually become much easier to prove.

Period domains. Polarized variation of Hodge structure give rise to holomorphic
mappings into so-called “period domains”, which are basically moduli spaces of
polarized Hodge structures. Some of their most interesting properties are easier to
describe in that setting.

Let V be a finite-dimensional complex vector space, and h : V ⊗C V → C a
hermitian pairing. Our goal is to describe all Hodge structures on V of weight
n, with a given set of Hodge numbers, that are polarized by h. One possibility
would be to remember all the subspaces in the Hodge decomposition, viewed as
points in suitable Grassmannians. But since the Hodge decomposition does not
vary holomorphically in families, a variation of Hodge structure would then not
lead to a holomorphic mapping into the moduli space. For that reason, it is better
to work with the Hodge filtration instead.

To simplify the notation, we are going to denote filtrations on V by a single
letter such as F ; this is really an abbreviation for the collection of subspaces F pV .
Fix one Hodge structure

V =
⊕

p+q=n

V p,q0

that is polarized by h, and denote the corresponding Hodge filtration by F0. The
set of all filtrations F such that

dimF p = dimF p0 for all p ∈ Z

is a partial flag manifold: a closed submanifold of the product of Grassmannians
∏

p∈Z
Gr(V,dimF p0 ),
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defined by the (closed) condition that F p+1 ⊆ F p for all p ∈ Z. In fact, it is even
a smooth projective variety. The set of all filtrations is traditionall denoted by Ď
and is called the “compact dual” of the period domain.

The condition that a filtration F ∈ Ď comes from a polarized Hodge structure of
weight n on V is open. As we saw at the beginning of the lecture, the condition is
that F p = F p ∩ (F p+1)⊥⊕F p+1 for every p ∈ Z, and that (−1)ph must be positive
definite on the subspace F p ∩ (F p+1)⊥ for every p ∈ Z. Both of these are clearly
open conditions. If we let D ⊆ Ď be the subset of those filtrations that correspond
to polarized Hodge structures of weight n, then D is an open subset of the complex
manifold Ď, and therefore again a complex manifold.

Definition 5.3. The complex manifold D is called the period domain for the po-
larized Hodge structures in question.

To be specific, every point F ∈ D determines a Hodge structure

V =
⊕

p+q=n

V p,qF

of weight n on V that is polarized by the hermitian pairing h. The p-th subspace
in the Hodge decomposition is V p,n−pF = F p ∩ (F p+1)⊥, and its dimension is the

fixed integer dimF p0 − dimF p+1
0 .

Example 5.4. A simple but instructive example are polarized Hodge structures of
elliptic curves. In Lecture 2, we saw that the Hodge structure

H1(E,C) = H1,0(E)⊕H0,1(E)

is polarized by the pairing (2πi)−1
∫
α ∧ β, which is negative definite on H1,0(E)

and positive definite on H0,1(E). Abstractly, we are therefore looking for Hodge
structures on V = C2 that are polarized by the hermitian pairing

h
(
(x′, y′), (x′′, y′′)

)
= x′x′′ − y′y′′.

This is the standard way to write a hermitian pairing of signature (1, 1). The Hodge
filtration is determined by the one-dimensional subspace F 1, and so Ď = P1. What
is D in this case? In order for a the subspace

F 1 = C · (x, y)

to correspond to a polarized Hodge structure of weight 1, we need

0 < (−1)1h
(
(x, y), (x, y)

)
= |y|2 − |x|2,

or equivalently, |y| > |x|. In particular, y 6= 0, and so after rescaling, F 1 = C · (t, 1),
where |t| < 1. This shows that the period domain

D =
{
t ∈ C

∣∣ |t| < 1
}

is isomorphic to the unit disk in C. You should check that the Hodge structure
corresponding to a point t ∈ D is

C · (t, 1)⊕ C · (1, t).
It the literature, the period domain for Hodge structures of elliptic curves is usually
taken to be the upper half-plane (which is of course isomorphic to the unit disk);
this is more natural if one is trying to parametrize the elliptic curves as quotients
C/(Z⊕ Zτ), but less natural from the point of view of Hodge structures.

Both D and Ď are also homogeneous spaces. This is very useful in practice.
The Hodge filtration F0 that we chose at the beginning can serve as a base point in
D ⊆ Ď. Any other filtration F ∈ Ď can be obtained from F0 by applying an element
of GL(V ): indeed, we can choose a basis in V that is adapted to the filtration F0,
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and another basis that is adapted to the filtration F , and then consider the linear
transformation that takes the first basis to the second. In other words, GL(V ) acts
transitively on Ď, and therefore

Ď ∼= GL(V )/B,

where B ⊆ GL(V ) is the stabilizer of F0. Note that GL(V ) is a complex Lie group,
and so we get another explanation for the fact that Ď is a complex manifold.

On the period domain D, we only have an action by the smaller group

GR =
{
g ∈ GL(V )

∣∣ h(gv′, gv′′) = h(v′, v′′) for all v′, v′′ ∈ V
}
.

Note that GR is only a real Lie group, due to the fact that h is conjugate-linear in
the second argument. It takes a little bit more work to see that the action is again
transitive. Recall that the Hodge decomposition

V =
⊕

p+q=n

V p,q0

is orthogonal with respect to h, and that (−1)ph is positive definite on V p,q0 . We
can therefore choose an h-orthogonal basis for each subspace V p,q0 , such that the
h-length of every vector is (−1)p. If we choose the same kind of basis for a second
Hodge filtration F ∈ D, the linear transformation that takes the first basis to the
second basis will then belong to GR. Consequently,

D ∼= GR/H,

where H ⊆ GR is again the stabilizer of the reference Hodge filtration F0. Note
that this way of writing D as a homogeneous space does not remember the fact
that D is actually a complex manifold (because GR is not a complex Lie group).

Lemma 5.5. The group H is compact.

Proof. Let C0 ∈ End(V ) be the operator that acts as multiplication by (−1)p on
the subspace V p,q0 . Since h is a polarization,

〈v′, v′′〉0 = h(C0v
′, v′′)

is a positive definite inner product on V . The unitary group

U = U
(
V, 〈 〉0

)
=
{
g ∈ GL(V )

∣∣ 〈gv′, gv′′〉0 = 〈v′, v′′〉0 for all v′, v′′ ∈ V
}

is of course a compact group. If an element g ∈ GR fixes F0, then it also fixes
the Hodge decomposition, because V p,q0 = F p0 ∩ (F p+1

0 )⊥. But then g preserves the
inner product 〈 〉0, and so

H ⊆ U ∩B.

It follows that H is a compact group. You can check for yourself that one actually
has equality here, meaning that H = U ∩B. �

The Lie algebra of GL(V ) is of course End(V ); the Lie algebra of GR is the
smaller real Lie algebra

g =
{
A ∈ End(V )

∣∣ h(Av′, v′′) + h(v′, Av′′) = 0 for all v′, v′′ ∈ V
}

of all endomorphisms that are skew-adjoint with respect to h.
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Period mappings. Suppose now that we have a polarized variation of Hodge
structure of weight n on a one-dimensional complex manifold B, with flat bundle
(V ,∇), Hodge bundles F pV , and polarization hV . This is a family of Hodge
structures, but all the Hodge structures are on different vector spaces, whereas the
period domain parametrizes Hodge structures on a fixed vector space. In order
to have a “moduli map”, we therefore need to find a trivialization for the vector
bundle V . Locally on B, and in fact on every simply-connected open subset, we
can always find a trivialization by ∇-flat sections. If we want a global trivialization,
we need to go to the universal covering space

π : B̃ → B.

Define Ṽ = π∗V , with the induced connection ∇̃ = π∗∇ and the induced pairing
h̃V = π∗hV . Now there is a clever way to avoid choosing a base point: let

V =
{
v ∈ H0(B̃, Ṽ )

∣∣ ∇̃v = 0
}

be the space of all flat sections of the pullback of V . Since B̃ is simply connected,
restriction from V to the fiber of Ṽ at any point of B̃ is an isomorphism, which
means that V is a model for the general fiber of V , without actually choosing any
points. In particular, we have trivialization

V ⊗C OB̃
∼= Ṽ ,

and so we can consider the Hodge bundles F pṼ = π∗F pV as being subbundles of
the trivial bundle with fiber V . By the universal property of the Grassmannian,
we therefore obtain a holomorphic mapping

Φ: B̃ → Ď,

where Ď parametrizes all filtrations F on the vector space V such that dimF p =
rkF pV for all p ∈ Z.

The vector space V also inherits a hermitian pairing

h : V ⊗C V → C,

as follows. Since h̃V is a flat pairing, we have

dh̃V (v′, v′′) = h̃V (∇̃v′, v′′) + h̃V (v′,∇v′′) = 0

for every v′, v′′ ∈ V , and so the C∞-function h̃V (v′, v′′) is constant on B̃. We define
h(v′, v′′) to be that constant value. Since we started from a polarized variation of
Hodge structure of weight n, all Hodge structures are polarized by the pairing h,
and so the image of Φ is contained in the period domain D ⊆ Ď. The holomorphic
mapping

Φ: B̃ → D

is called the period mapping of the polarized variation of Hodge structure. (In
order to get something defined on B, one has to quotient D by the action of the
monodromy group, but this construction will not be important for us.)

Example 5.6. Period mappings have some very interesting (but not obvious) prop-
erties. Here is the simplest example of this. Consider a polarized variation of Hodge
structure of weight 1, coming from a family of elliptic curves. In this case, the pe-
riod mapping Φ: B̃ → D goes into the unit disk. By the classification of simply
connected Riemann surfaces, B̃ is either P1, or C, or the unit disk D. In the first
two cases, the period mapping is constant, which means that the variation of Hodge
structure is locally trivial. In the third case, the period mapping is a holomorphic
mapping from the unit disk to itself, and by the Schwarz-Pick lemma, we know for
example that

|Φ(t)| ≤ |t|
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for every t ∈ D, and that equality for any t ∈ D implies that Φ must be a rotation.
We will see later that, altough a general period domain does not look at all like the
unit disk, period mappings nevertheless have similar properties as in this example.

Tangent spaces. Since Ď = GL(V )/B, the tangent space to Ď (and hence D) at
the reference point F0 can be identified with

End(V )/
{
A ∈ End(V )

∣∣ A(F p0 ) ⊆ F p0 for all p ∈ Z
}
.

Our goal is to construct a hermitian metric on D that behaves in some ways like a
the negatively curved metric on the unit disk (which is responsible for the Schwarz-
Pick lemma). This metric is ultimately induced by the polarization on the reference
Hodge structure. Let me start with some general remarks.

Let V be a complex vector space, h a hermitian pairing, and suppose that

V =
⊕

p+q=n

V p,q

has a Hodge structure of weight n polarized by h. Then

E = End(V ) ∼= V ∗ ⊗C V

inherits a Hodge structure of weight −n+ n = 0, which we write as

E =
⊕

`∈Z
E`,−`.

We can describe the Hodge decomposition very concretely as follows:

E`,−` =
{
A ∈ End(V )

∣∣ A(V p,q) ⊆ V p+`,q−` for every p, q ∈ Z
}

Roughly speaking, we are decomposing the space of matrices into blocks, corre-
sponding to the given decomposition of V . Likewise,

F pE =
{
A ∈ End(V )

∣∣ A(F iV ) ⊆ F i+pV for every i ∈ Z
}
.

In particular, the space F 0E consists exactly of those endomorphisms that map the
Hodge filtration on V into itself.

Interestingly, the Hodge structure on E is actually an R-Hodge structure. This
is due to the pairing. The pairing h is nondegenerate, and so every A ∈ End(V )
has an adjoint A∗ ∈ End(V ), defined by the condition that

h(Av′, v′′) = h(v′, A∗v′′)

for all v′, v′′ ∈ V . The mapping A 7→ A∗ is a conjugate-linear involution of End(V ),
due to the fact that (λA)∗ = λA∗ for every λ ∈ C. The set

ER =
{
A ∈ End(V )

∣∣ A = A∗
}

of all self-adjoint endomorphisms is therefore a real subspace of E with the property
that E = C⊗R ER. It is not hard to see that A ∈ E`,−` if and only if A∗ ∈ E−`,`,
and so we actually have an R-Hodge structure on ER.

The polarization on V is going to induce a polarization on E, which can again
be described in the following concrete manner.

Lemma 5.7. The pairing

E ⊗C E → C, (A,B) 7→ tr(A ◦B∗),
polarizes the Hodge structure on E.

Proof. I only had time to show that the Hodge decomposition is orthogonal with
respect to the trace pairing. Take A ∈ E`,−` and B ∈ Ek,−k. Then B∗ ∈ E−k,k, and
therefore A ◦B∗ ∈ E`−k,k−`. If k 6= `, then A ◦B∗ shifts the Hodge decomposition
either up or down in a nontrivial way, and so some power of A ◦ B∗ must vanish.
But this means that A ◦B∗ is nilpotent, and so tr(A ◦B∗) = 0. �
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